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Harvesting is one of the central issues in bio-economics. It has
been widely recognized that it may not be a good idea to consider
only maximizing short-term benefits focusing purely on harvesting.
Although over-harvesting in a short period may maximize the
short-term economic benefits, it breaks the balance between
harvesting and its ecological implications.

Simple minded policies may lead to detrimental after effect. It is
crucially important to pay attention not to render exceedingly
harmful decision to the environment.

For some optimal harvesting models with finite-time yield or
discounted yield, see, Alvarez (1998, 2006), Alvarez et al (2016),
Lungu and Oksendal (2001), among others.



In contrast, ecologists and bio-economists emphasize the
importance of sustainable harvest in both biological conservation
and long-term economic benefits. Anderson and Seijo (2010) and
Clark (2010) introduced the concept of maximum sustainable
yield, which is the largest yield (or catch) that can be taken from a
species’ stock over an infinite horizon.

They indicated that it is more reasonable to maximize the yield in
such a way that a species is sustainable and not in danger leading
to extinction of the species.

Inspired by the idea of using maximum sustainable yield, we pay
special attentions to sustainability, biodiversity, biological
conservation, and long-term economic benefits, and consider
long-term horizon optimal strategies. In lieu of discounted profit,
we examine objective functions that are of long-run average per
unit time type.



The equation for a Lotka-Volterra predator-prey system perturbed
by white noise is
{

dX (t) = X (t)
[
a1 −b1X (t)−c1Y (t)

]
dt +X (t)σ1dW1(t)

dY (t) = Y (t)
[
−a2 −b2Y (t)+c2X (t)

]
dt +Y (t)σ2dW2(t).

(1.1)
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Putting an harvesting effort u(t) at time t on the predator, the
equation becomes
{

dX (t) = X (t)
[
a1 −b1X (t)−c1Y (t)

]
dt +X (t)σ1dW1(t)

dY (t) = Y (t)
[
−a2−u(t)−b2Y (t)+c2X (t)

]
dt +Y (t)σ2dW2(t).

(1.2)



u(t) takes value in an interval [0,M]. Thus, the amount of
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harvested biomass in a short period of time ∆t is Y (t)u(t)∆t .

Let Φ(·) : R+ 7→ R+ be the revenue (or yield) function that provides
the economic value as a function of harvested biomass.

The time-average harvested value over an interval [0,T ] is
1
T

∫ T

0
Φ
(

Y (t)u(t)
)

dt .

Our goal is to

maximize liminf
T→∞

1
T
E

∫ T

0
Φ
(

Y (t)u(t)
)

dt a.s. (1.3)



HJB Equation of Ergodic Control Problem for
Diffusion Processes



Consider the controlled diffusion on R
d

dX (t) = b(X (t),u(t))dt +σ(X (t))dW (t) (2.1)

where u(·) : R+ 7→ U, a compact metric space.

b(x ,u), σ(x) are Lipschitz in x uniformly in u and have linear
growth rates.

σσ⊤ is uniformly elliptic.
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dX (t) = b(X (t),u(t))dt +σ(X (t))dW (t) (2.1)

where u(·) : R+ 7→ U, a compact metric space.

b(x ,u), σ(x) are Lipschitz in x uniformly in u and have linear
growth rates.

σσ⊤ is uniformly elliptic.

Our goal is to minimize a.s. over all admissible policies the
functional

limsup
T→∞

1
T

∫ T

0
c(X (t),u(t))dt . (2.2)

Suppose that c is continuous in (x ,u) and bounded below.



We broaden the class of admissible controls to “relaxed controls”.
Let V = P(U) be the space of probability measures endowed
with the Prohorov topology.
A relaxed control is a measurable function R+ 7→ V .
A precise control (an ordinary control) is a relaxed control with
Dirac measure values.
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T

∫ T

0
c(X (t),v(t))dt . (2.4)

Henceforth, “control” means relaxed control. “non-randomized”
control means precise control (ordinary control).



ṽ(t) is called a Markov control (feedback control) if ṽ(t) = v(X (t))
for a measurable map v : Rd 7→ V

It can be proved that under a Markov control v ,

dX (t) = b(X (t),v(X (t))dt +σ(X (t))dW (t)

admits a unique strong solution that is a strong Feller process; see
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for a measurable map v : Rd 7→ V

It can be proved that under a Markov control v ,

dX (t) = b(X (t),v(X (t))dt +σ(X (t))dW (t)

admits a unique strong solution that is a strong Feller process; see
Krylov “Controlled Diffusion Processes”.

A Markov control v is called stable if the corresponding process
X (t) is positive recurrent. In this case, the process has a unique
invariant probability measure, denoted by ηv ∈ P(Rd ).

Denote by Π,ΠSM ,ΠSMD the sets of admissible controls, stable
Markov controls, stable non-randomized Markov controls
respectively.



Under a stable Markov control, by the ergodicity we have

lim
T→∞

1
T

∫ T

0
c(X (s),v(X (s))ds =

∫

Rd
c(x ,v(x))ηv (dx) =: ρv , a.s.

Suppose that ρ∗ := infv∈ΠSM
{ρv}< ∞.



Under a stable Markov control, by the ergodicity we have

lim
T→∞

1
T

∫ T

0
c(X (s),v(X (s))ds =

∫

Rd
c(x ,v(x))ηv (dx) =: ρv , a.s.

Suppose that ρ∗ := infv∈ΠSM
{ρv}< ∞.

Under some additional conditions, it can be shown that there is a
Markov control v∗ such that

ρv∗ = ρ∗ = inf
v∈ΠSM

{ρv}.

and

limsup
1
T

∫ T

0
c(u(t),X (t)dt ≥ ρ∗, a.s.

for any admissible control u(·).



The condition imposed to penalize unstable behavior is

Assumption 2.1 (Near Monotonicty Condition)

lim inf
‖x‖→∞

{
inf

u∈U
c(x ,u)

}
> ρ∗. (2.5)



The condition imposed to penalize unstable behavior is

Assumption 2.1 (Near Monotonicty Condition)

lim inf
‖x‖→∞

{
inf

u∈U
c(x ,u)

}
> ρ∗. (2.5)

Intuitively, (2.5) penalizes trajectories lying outside the set
{infu∈U c(x ,u)} ≤ ρ∗.

It forces an optimal process to spend a nonvanishing fraction of
time in a bounded compact set. It excludes “unstable” policy from
being candidates for optimality.



Theorem 2.1
Suppose that Assumption 2.1 is satisfied and c(x ,u) is locally Lipschitz
in x uniformly in u. Then there exists V ∈ C2(Rd) such that

min
u∈U

[L uV (x)+c(x ,u)] = ρ∗.

and the pair (V ,ρ∗) is unique in the class of (V ,ρ) ∈ W 2,p
loc (R

d)×R

satisfying
min
u∈U

[L uV (x)+c(x ,u)] = ρ

and
ρ ≤ ρ∗,V (0) = 0, inf

Rd
V >−∞.

A Markov control v is optimal if and only if it satisfies
minu∈U [L uV (x)+c(x ,u)] = L vV (x)+c(x ,v) or equivalently

min
u∈U

[
∑bi(x ,u)Vxi (x)+c(x ,u)

]
= ∑b

i
(x ,v)Vxi (x)+c(x ,v)



The condition we impose to penalize unstable behavior is as
follows.

Assumption 2.2 (Uniform Stability Condition)

lim inf
R→∞

sup
ν∈Π

∫

Bc
R×U

{1+ |c(x ,u)|}ηv (dx)v(du) = 0. (2.6)



The condition we impose to penalize unstable behavior is as
follows.

Assumption 2.2 (Uniform Stability Condition)

lim inf
R→∞

sup
ν∈Π

∫

Bc
R×U

{1+ |c(x ,u)|}ηv (dx)v(du) = 0. (2.6)

Under Assumption (2.2), There exists an inf-compact function h
such that

lim
‖x‖→∞

c(x ,u)
h(x)

= 0

and
sup
ν∈Π

∫

Rn×U
h(x)ηv (dx)v(du) < ∞



Theorem 2.2
Suppose that Assumption 2.2 is satisfied and c(x ,u) is locally Lipschitz
in x uniformly in u. Then there exists V ∈ C2(Rd) such that

min
u∈U

[L uV (x)+c(x ,u)] = ρ∗

and

lim‖x‖→∞
V (x)
h(x)

= 0 (2.7)

and the pair (V ,ρ∗) is unique in the class of (V ,ρ) ∈ W 2,p
loc (R

d)×R

satisfying (2.7) and V (0) = 0. A Markov control v is optimal if and only
if it satisfies minu∈U [L uV (x)+c(x ,u)] = L vV (x)+c(x ,v) or
equivalently

min
u∈U

[
∑bi(x ,u)Vxi (x)+c(x ,u)

]
= ∑b

i
(x ,v)Vxi (x)+c(x ,v)



Optimal Harvesting Strategies for Single Population

We consider a population whose density X̃ (t) at time t ≥ 0, in the
absence of harvesting, satisfies

dX̃(t) = X̃ (t)(µ −κX̃(t))dt +σ X̃(t)dB(t), X̃ (0) = x > 0,

where (B(t))t≥0 is a standard one dimensional Brownian motion.
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dX̃(t) = X̃ (t)(µ −κX̃(t))dt +σ X̃(t)dB(t), X̃ (0) = x > 0,

where (B(t))t≥0 is a standard one dimensional Brownian motion.
Assume that the population is harvested at time t ≥ 0 at the rate
h(t) ∈ U := [0,M],

dX (t) = X (t)(µ −κX (t)−h(t))dt +σX (t)dB(t), X (0) = x > 0.
(3.1)

Let Φ : R+ → R+ be a continuous, increasing function satisfying
Φ(0) = 0 and suppose Φ has a linear growth rate. Our aim is to
find the optimal strategy h(t) that almost surely maximizes

liminf
T→∞

1
T

∫ T

0
Φ
(

X (t)h(t)
)

dt .
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For this controlled equation, neither near-monotonicity condition
nor uniform stability condition are satisfied.

However, there are two boundary points 0 and ∞. the
near-monotonicity condition is satisfied near 0, the uniform
stability condition is satisfied near ∞.



For this controlled equation, neither near-monotonicity condition
nor uniform stability condition are satisfied.

However, there are two boundary points 0 and ∞. the
near-monotonicity condition is satisfied near 0, the uniform
stability condition is satisfied near ∞.

Since the two points are separate and the state space is one
dimensional, we can obtain the desired result by assuming that

µ −
σ2

2
> 0.



Theorem 3.1

The HJB equation

max
u∈U

[
LuV (x)+Φ(xu)

]
= ρ (3.2)

admits a classical solution V ∗ ∈ C2(R+) satisfying V ∗(1) = 0 and
ρ = ρ∗ > 0. The solution V ∗ of (3.2) has the following properties:

a) For any p ∈ (0,1)

lim
x→∞

V ∗(x)
xp = 0 and lim

x→0

V ∗(x)
x−p = 0 (3.3)

b) The function V ∗ is increasing.

A Markov control v is optimal if and only if it satisfies

−
dV ∗

dx
(x)xv(x)+Φ(xv(x)) = max

u∈U

(
−

dV ∗

dx
(x)xu+Φ(xu)

)
(3.4)

almost everywhere in R+.



Theorem 3.2

Assume that Φ(x) = x ,x ∈ (0,∞) and that the population survives in
the absence of harvesting, that is µ − σ2

2 > 0. The optimal control v
has the bang-bang form

v(x) =

{
0 if 0 < x ≤ x∗

M if x > x∗
(3.5)

for some x∗ ∈ (0,∞). Furthermore, we have the following upper bound
for the optimal asymptotic yield

ρ∗ ≤
µ2

4κ
. (3.6)



Having the form (3.5) of the optimal harvesting strategy v in hand we
next want to say something about the point x∗ at which the harvesting
strategy becomes nonzero. In order to achieve that we maximize over
all the controls w(·,η) of bang-bang type

w(x ;η) =

{
0 if 0 < x ≤ η
M if x > η,

(3.7)

and find the η which maximizes the asymptotic yield.



In this case the harvesting yield is

H(η) =

∫ ∞

η
yM

1
σ2y2

(
y
η

) 2(µ−M)

σ2

e
− 2κ

σ2 (y−η)
dy

∫ η

0

1
σ2y2

(
y
η

) 2µ
σ2

e
− 2κ

σ2 (y−η)
dy +

∫ ∞

η

1
σ2y2

(
y
η

) 2(µ−M)

σ2

e
− 2κ

σ2 (y−η)
dy

(3.8)



Optimal Strategies of Havesting the Predator in a Predator- Prey
Model

{
dX (t) = X (t)

[
a1 −b1X (t)−c1Y (t)

]
dt +σ1X (t)dW1(t)

dY (t) = Y (t)
[
a2 −u(t)−b2Y (t)+c2X (t)

]
dt +σ2Y (t)dW2(t),

(4.1)
Our goal is to estalish the HJB equation and prove the existence
and uniqueness of its solution.

In the general setting for ergodic control of diffusion processes,
the existence and uniqueness of solutions to the HJB equation is
proved under either of two assumptions: near-monotonicity or
uniformly stability of Markov controls.

Our model satisfies neither of them although it partially satisfies a
mixture of the two assumptions.



We can show that

lim
t→∞

E
ν
x ,y [X

2(t)+Y 2(t)]≤ C

for some constant C that does not depend on x ,y and ν . Thus,
the controlled process is "uniformly stable" in the space R

2
+, but

NOT in R
2,◦
+ .

We have to handle the process on the boundary x = 0 and y = 0.
When X (t) is small, Y (t) is decreasing to 0. That allows us to
focus on the boundary y = 0. Near the boundary y = 0, the
near-monotonicity condition is satisfied.

Our model partially satisfies a mixture of the two assumptions.



Let Vα(s,x) be the optimal α-discounted yield, that is

Vα(s,x) = inf
u∈ΠR

E
u
s,x

∫ ∞

0
e−α tu(t)Y (t)dt , (s,x) ∈ R

2,◦
+ .

Then Vα(s,x) ∈ C2(R2,◦
+ )∪Cb(R

2,◦
+ ) satisfies

max
u∈[0,M]

{
L

uV (x ,s)+ux
}
= αVα(s,x) (4.2)



Lemma 4.1 (A. Arapostathis, V. S. Borkar and M. K. Ghosh
2012)

Fix (x∗,y∗) ∈ R
2,◦
+ . For any sequence αn ↓ 0 there exists a

subsequence, which is still denoted by {αn}, and a function V ∈ C(R2,◦

and a constant ρ such that as n → ∞, we have

αnVαn(x∗,y∗)→ ρ and V αn(x ,y) := Vαn(x ,y)−Vαn(x∗,y∗)→ V (x ,y)
(4.3)

uniformly in each compact subset of R2,◦. Moreover, we have

max
u∈[0,M]

{
L

uV (x ,y)+Φ(uy)
}
= ρ ≤ ρ∗, (x ,y) ∈ R

2,◦
+ ,



Conditions for Persistence

We assume that

a1 −
σ2

1

2
> 0

and

λ :=−a2 −
σ2

2

2
+c2

a1 −
σ2

1

2
b1

> 0



Behaviors when Y (t) is small

Without predator, the dynamics of the prey is

dX̃(t) = X̃ (t)
[
a1 −b2X̃ (t)

]
dt +σ1X̃ (t)dW1(t)

Let [δ1,δ−1
1 ], δ1 < 1 be a sufficiently large interval on (0,∞). Since

limT→∞0
1
T
∫ T

0 X̃ (t)dt =
a1 −σ2

1/2
b2

, there exists T > 0 such that

1
T

∫ T

0
Ex

(
−a2 −

σ2
2

2
+ X̃(t)

)
dt ≥

3λ
4

for any x ∈ [δ1,δ−1
1 ]



Behaviors when Y (t) is small

E
v
x ,y

lnY (T )− lnY (0)
T

=−

(
a2 +

σ2
2

2

)
+

1
T
E

v
x ,y

∫ T

0
(c2X (t)dt +v(X (t),Y (t))−b2Y (t)dt)

>
λ
2
−

1
T

∫ T

0
v(X (t),Y (t))dt



Intuiton

We should not harvest (or at least not harvest much) a species when
its density is very small.
This tells us that an optimal strategy v∗ should satisfies that v∗(x ,y) is
small when y is small.



Lemma 4.2
There exists δ2 > 0 such that if v is a Markov control such that
1
T
E

v
x ,y

∫ T

0
v(X (t),Y (t))dt >

λ
4

for some (x ,y) ∈ [δ1,δ−1
1 ]× (0,δ2] then

we can construct a Markov control ṽ such that

1
T
E

ṽ
x ,y

∫ T

0
v(X (t),Y (t))dt <

λ
4

for any (x ,y) ∈ [δ1,δ−1
1 ]× (0,δ2]

and ρv ≤ ρṽ

The claim is also true for the value function of the α-discount problem
when α is sufficiently small.



We can focus on the set of Markov control v ∈ Π̃ satisfying

1
T
E

ṽ
x ,y

∫ T

0
v(X (t),Y (t))dt <

λ
4

for any (x ,y) ∈ [δ1,δ−1
1 ]× (0,δ2].

We denote that subset of controls by Π̃.
We can have

E
v
x ,y

lnY (T )− lnY (0)
T

≥
λ
4
,(x ,y) ∈ [δ1,δ−1

1 ]× (0,δ2]

We analyze the log-Laplace transform to interchange the E and ln. to
obtain E

v
x ,yY−θ (T )≤ γ̃y−θ , γ̃ ∈ (0,1)



E
v
x ,y Uθ(X (T ),Y (T ))≤ γUθ (x ,y),γ ∈ (0,1), for any (x ,y) ∈ R

2,◦
+

for v ∈ Π̃ where θ > 0 is small enough and

U(x ,y) =
(1+c2x +c1y)

x0.5y0.5

Since

|V (x ,y)| ≤ sup
v∈Π̃

E
v
x ,y

∫ τK

0
(φ(v(X (t),Y (t))Y (t))+ρ∗)dt + sup

(x ,y)∈K
V

where τK = inf{t ≥ 0 : (X (t),Y (t)) ∈ K}, we can show that

lim
x+y+ 1

x +
1
y →∞

V (x ,y)
Uθ (x ,y)

= 0



Theorem 4.1

There is a unique pair of (V ,ρ) where V ∈ C2(R2,◦
+ )∩o(U) and ρ ∈R

satisfying the equation

max
u∈[0,M]

{
L

uV (x ,y)+φ(uy)
}
= ρ .

Moreover, we have ρ = ρ∗ and v∗ ∈ ΠRM is an optimal control if and
only if it is a measurable selector of from the maximizer:

max
u∈[0,M]

{
L

uV (x ,y)+φ(uy)
}
.

In fact, if φ(uy) = uy we can choose

v∗(x ,y) =





0 if
∂V (x ,y)

∂y
≤ 1

M otherwise



Since maxu∈[0,M] {L
uV (x ,s)+ux}= ρ For any control v ∈ Π̃,

E
v
x ,y V (X (T ),Y (T )−V (x ,y) =E

v
x ,y

∫ T

0
L

νV (X (t),Y (t))dt

≤E
v
x ,y

∫ T

0
(ρ −φ(v(X (t),Y (t))Y (t)))dt

Since
1
T
E

v
x ,y V (X (T ),Y (T ))→ 0 as T → 0, we have that

ρ ≥ lim
T→∞

1
T
E

v
x ,y

∫ T

0
φ(v(X (t),Y (t))Y (t)).

Thus, ρ ≥ ρ∗.



Since maxu∈[0,M] {L
uV (x ,s)+ux}= ρ For any control v ∈ Π̃,

E
v
x ,y V (X (T ),Y (T )−V (x ,y) =E

v
x ,y

∫ T

0
L

νV (X (t),Y (t))dt

≤E
v
x ,y

∫ T

0
(ρ −φ(v(X (t),Y (t))Y (t)))dt

Since
1
T
E

v
x ,y V (X (T ),Y (T ))→ 0 as T → 0, we have that

ρ ≥ lim
T→∞

1
T
E

v
x ,y

∫ T

0
φ(v(X (t),Y (t))Y (t)).

Thus, ρ ≥ ρ∗.

Let v∗ be a control satisfying that

L
vV (x ,s)+φ(vx) = max

u∈[0,M]

{
L

uV (x ,s)+φ(ux)
}
,

we can show that ρ ≤ ρ∗.



Havested Predator-Prey Model under Wideband
Noise



Why Wideband Noise?

It has been widely recognized that Brownian motion is only an
idealized formulation or suitable limits of systems in the real world.

To be more realistic, we would better assume that the environment
is subject to disturbances characterized by a jump process with
rapid jump rates. This jump process can be modeled by the
so-called wideband noise.

Motivated by the approach in Kushner and Ruggaldier (1978), we
consider a Lotka-Volterra predator-prey model with wideband
noise and harvesting in this paper.



The Model

Denote by X ε(t) and Y ε(t) the sizes of the prey and the predator,
respectively. The system of interest is of the form




dX ε(t) = X ε(t)
[
a1 −b1X ε(t)−c1Y ε(t)

]
dt +

1
ε

X ε(t)r1(ξ ε(t))dt

dY ε(t) = Y ε(t)
[
−a2 −h(Y ε(t))u(t)−b2Y ε(t)+c2X ε(t)

]
dt

+
1
ε

Y ε(t)r2(ξ ε(t))dt ,

(5.1)

where ε is a small parameter, ξ (t) is an ergodic,

time-homogeneous, Markov-Feller process, and ξ ε(t) = ξ
(

t
ε2

)
,

ai ,bi ,ci , i = 1,2 are positive constants, and u(t) represents the
harvesting effort at time t while h(·) : R+ 7→ [0,1] indicates the
effectiveness of harvesting, which is assumed to be dependent on
the population of the predator.



The time-average harvested value over an interval [0,T ] is
1
T

∫ T

0
Φ
(

h(Y ε(t)Y ε(t))u(t)
)

dt . Our goal is to

maximize liminf
T→∞

1
T

∫ T

0
Φ
(

h(Y ε(t))Y ε(t)u(t)
)

dt a.s. (5.2)



Because of the complexity of the model, developing optimal
strategies for the controlled system (5.1) and (5.2), are usually
difficult. Nevertheless, one may wish to construct policies based
on the limit system.

A natural question arises: Can optimal or near-optimal harvesting
strategies for the diffusion model be near optimal harvesting
strategies for the wideband-width model when ε is sufficiently
small?

In a finite horizon, nearly optimal controls for systems under
wideband noise perturbations were developed in the work of
Kushner and Ruggaldier. For infinite horizon problems, under
suitable conditions, the authors established that there is a limit
system being a controlled diffusion process.

Inspired by their work, we aim to develop near-optimal policies in
this paper in an infinite horizon.



Some Assumptions

Suppose ξ (t) is a pure jump Markov-Feller process taking values
in a compact metric space S .

Suppose its generator is given by

Qφ(w) = q(w)

∫

S

Λ(w ,dw̃)φ(w̃)−q(w)φ(w)

where q(·) is continuous on S and Λ(w , ·) is a probability
measure on S for each w .

Suppose that ξ (t) is uniformly geometric ergodic with invariant
measure P(·). Let χ(w , ·) =

∫ ∞
0

[
P(t ,w , ·)−P(·)

]
dt . Suppose that

ri(·) is bounded in S , and
∫

S

ri(w)P(dw) = 0, i = 1,2. (5.3)



Let A = (aij)2×2 with

aij :=
∫

S

∫

S

χ(w ,dw̃)P(dw)
[
ri(w)rj(w̃)+ rj(w)ri(w̃)

]
.

We suppose that A is positive definite with square root (σij)2×2. It
is well-known that in each finite interval of time, (5.1) can be
approximated by





dX (t) = X (t)
[
a1 −b1X (t)−c1Y (t)

]
dt

+X (t)(σ11dW1(t)+σ12dW2(t))

dY (t) = Y (t)
[
a2 −h(Y (t))u(t)−b2Y (t)+c2X (t)

]

dt +Y (t)(σ12dW1(t)+σ22dW2(t)),

(5.4)

where a1 = a1 +
a11

2
= a1 +

σ2
11 +σ2

12

2
,

a2 =−a2 +
a22

2
=−a2+

σ2
22 +σ2

12

2
, W1,W2 are two independent

Brownian motions.



By an ergodicity argument, it can be shown that if −a2 +c2
a1

b1
< 0

then for any admissible control u(t), Y ε(t) tends to 0 with
probability 1 for any ε > 0, which implies

lim
T→∞

1
T

∫ T

0
Φ
(

h(Y ε(t))Y ε(t)u(t)
)

dt = 0 a.s.

Thus, to avoid the trivial limit, we assume that

−a2 +c2
a1

b1
> 0. (5.5)



Main Difficulty and Ideas to Solve

From the work of Kushner and Ruggaldier, we proceed to verify the
following conditions to prove the desired result.

(C1) There is an ε0 > 0 such that
{Z ε(u, t),u ∈ PMε ,0 ≤ t < ∞,ε ≤ ε0} is Pz,w -tight in R

2,◦
+ for each

(z,w) ∈ R
2,◦
+ ×S .

(C2) There is a δ -optimal Markov control u(z) that is locally
Lipschitz in z for any δ > 0.

Once the conditions (C1) and (C2) are verified, we can use
near-optimal strategies for (5.4) to construct near-optimal strategies for
the harvested system perturbed by wideband noise.



To achieve our goal of obtaining near optimality, one of our main
tasks is to prove the uniform tightness of the ε-controlled system
(5.1).

Because of the negative quadratic terms in the drift, for the
Lyapunov function V̂1(x ,y) := 1+c2x +c1y , we can obtain that

LuV̂1(x ,y) ≤ ĉ1 − ĉ2V̂ 2
1 (x ,y)

for some ĉ1 > 0, ĉ2 > 0.

By the perturbed Lyapunov function methods, we can construct a
perturbation V̂ ε

1 satisfying

L
ε
u V̂ ε

1 ≤ ĉ3 − ĉ4V̂ ε
1 (x ,y),(x ,y) ∈ R

2,◦
+ (5.6)

for some ĉ3 > 0, ĉ4 > 0, and ε sufficiently small.

This proves the uniform tightness of
{Z ε(t),u ∈ PMε ,0 ≤ t < ∞,ε ≤ ε0} in R

2
+.



The main issue is to investigate the behaviors of Z ε(t) near the
boundary in order to obtain the uniform tightness in R

2,◦
+ .

While it seems practically impossible to find a Lyapunov function
V̂2(x ,y) satisfying V̂2(x ,y) > 0,(x ,y) ∈R

2,◦
+ , V̂2(x ,y)→ ∞ as

(x ,y)→ ∂R2
+ and that

LuV̂2(x ,y) ≤ ĉ5 − ĉ6V̂2(x ,y),

investigating the long-term behavior of Z (t) when it is close to the
boundary as well as the invariant measures on the boundary
provides an intuitive idea to tackle the problem.



With a Markov control mt = v(Z (t), (5.4) has two ergodic invariant
measures on the boundary ∂R2

+ which are the Dirac measure δ ∗

concentrated on (0,0) and µ∗ on (0,∞)×{0}.

The growth rate of X (t) when Z (t) is close to (0,0) is
approximated by a1 > 0. Likewise, the growth rate of Y (t) when
Z (t) is close to (0,∞)×{0} is approximated by∫ t

0
(a2 −h(y)v(x ,y)−b2y +c2x)µ∗(dx ,dy) =−a2 +

c2a1

b1
> 0.

This indicates that both ergodic measures on the boundary are
“repeller”.



As a result, by the idea of Lyapunov exponents and the use of
log-Laplace approach we have the estimate that

Ex ,y V̂2(X ,(T )Y (T ))≤ κV̂2(x ,y)

where T is sufficiently large, κ ∈ (0,1) and (x ,y) is in a given

bounded set and V̂2(x ,y) =
1

xp1yp2
for suitable p1 > 0,p2 > 0.

Then, we can derive

Ex ,y V̂ ε
2 (X ,(T )Y (T ))≤ κV̂ ε

2 (x ,y) (5.7)

when (x ,y) is in a bounded set and V̂ ε
2 (x ,y) is a perturbation of

V̂2.

Having that, we can get the uniform tightness in R
2,◦
+ .



Near Optimality

Theorem 5.1

For any δ > 0, there exists a locally Lipschitz Markov control uδ such
that for sufficiently small ε > 0, we have

ρ∗−2δ ≤ Jε (uδ ) := lim inf
T→∞

1
T

∫ T

0
Φ
(

h(Y ε(t)Y ε(t))uδ (t)
)

dt ≤ ρ∗+2δ a.s.

and that ρ∗−δ ≤ Jε ≤ ρ∗+δ a.s. which implies

Jε (uδ )≥ J
ε −3δ a.s.

Here ρ∗ is the optimal yield of (5.4) and Jε is the optimal yield of (5.1).



Further Remarks for the harvested model under white noise

We are just able to consider very simple problems of ergodic
harvesting of ecosystems.



Further Remarks for the harvested model under white noise

We are just able to consider very simple problems of ergodic
harvesting of ecosystems.

We hope to better characterize the optimal harvesting strategies.
For instance, in the predator-prey system, when Φ(·) is the identity
function, we conject that there exists y∗ = y∗(x) such that the
optimal strategy has the form:

v∗(x ,y) =

{
0 if y < y∗(x)

M otherwise



Further Remarks for the harvested model under white noise

We are just able to consider very simple problems of ergodic
harvesting of ecosystems.

We hope to better characterize the optimal harvesting strategies.
For instance, in the predator-prey system, when Φ(·) is the identity
function, we conject that there exists y∗ = y∗(x) such that the
optimal strategy has the form:

v∗(x ,y) =

{
0 if y < y∗(x)

M otherwise

We want to consider more general models and harvested
ecosystems with constraints.



Further Remarks for the harvested model under wideband nois e

The main result, Theorem 5.1 still holds true if the following
generalizations are made.

(a) The coefficients ai ,bi ,ci , i = 1,2 depend on the state of ξ ε(t).

(b) The wideband noise in (5.1), which is linear in the current setup,
can be replaced by nonlinear terms.

(c) The assumption on ξ (t) in Section 2 can be reduced to the
condition that ξ (t) a stationary zero mean process, which is either
(i) strongly mixing, right continuous and bounded, with the mixing
rate function φ(·) satisfying

∫ ∞
0 φ1/2(s)ds < ∞, or (ii) stationary

Gauss-Markov with an integrable correlation function



Thank you
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